

Senoia Engineering Solutions

COST ANALYSIS CONSIDERATIONS FOR SEMICONDUCTOR DEVICES

Copyright © 2019 – Senoia Engineering Solutions, LLC. All rights reserved.

Senoia Engineering Solutions

INTRODUCTION

> <u>Jeff Miller</u>

President and Owner Senoia Engineering Solutions, LLC

- B.S. Electrical Engineering Kettering University (Flint, MI)
- M.S. Industrial Engineering Purdue University (West Lafayette, IN)
- MBA –

Rollins College (Winter Park, FL)

 Certificate in Executive Management – University of Notre Dame (South Bend, IN)

Experience

- 33 years of multifunctional experience within the electronics industry
 - *Automotive:* GM, Ford, Standard Motor Products, Panasonic
 - Agriculture: John Deere
 - *Major Appliance:* Whirlpool Corporation
- Over 11 years experience in cost engineering & VEVA of electronics and electrical assemblies

Other

 Contributing author: "Realistic Cost Estimating for Manufacturing – 3rd Edition"

Published by the Society of Manufacturing Engineers – edited by Michael Lembersky

WHAT'S INSIDE

Copyright © 2019 – Senoia Engineering Solutions, LLC. All rights reserved.

The Case for Cost Modeling of Semiconductors 5

- Why Should We Cost Model ?
- Overview of Semiconductor Families

Manufacturing Overview

- Clean Rooms
- Starting Substrate
- Back End Processes

Cost Modeling Strategies / Techniques

- Considerations:
 - Die Size vs. Yield
 - \circ Life Cycle
- Strategies:
 - \circ $\,$ Correlation to distributor pricing $\,$
 - \circ Deep dive cost modeling

9

16

THE CASE FOR COST MODELING OF SEMICONDUCTOR DEVICES

INCREASING SILICON CONTENT OF FUTURE AUTOMOBILES

Connectivity

Autonomous Driving

Electrification

Copyright © 2019 – Senoia Engineering Solutions, LLC. All rights reserved.

SEMICONDUCTOR DEVICES - FAMILY OVERVIEW

Microelectromechanical Systems (MEMS)	Discrete Devices	Monolithic Integrated Circuits (IC)	Optoelectronic Devices
Accelerometers	• Diodes	Microprocessors	Laser Diodes
Pressure Sensors	Transistors	Microcontrollers	 Charge Coupled Devices (CCD)
Micro-machined	Insulated Gate Bipolar Trans. (IGBT)	Memory Devices	Light Emitting
sensors and actuators	• Field Effect Transistors (FET)	 Analog / Linear 	Diodes (LED)
	• Silicon Controlled Rectifiers (SCR)	ASICS	Solar Cells
	Thyristors		

Self-driving vehicles will use ALL of these device families – and more !!

COST ELEMENTS – TYPICAL ELECTRONIC ASSEMBLY

MANUFACTURING OVERVIEW

SILICON WAFER MANUFACTURING PROCESS

Five Basic Process Steps:

STEP 1: STARTING SUBSTRATE

- Starting material is typically purchased from a Tier 2 supplier to the fab.
- Czochralski process is used to grow pure ingot with uniform crystal matrix.

STEP 2: WAFER FABRICATION

a) Silicon with silicon dioxide layer

b) Coat with photoresist

c) Expose photoresist with a patterned reticle

d) Develop photoresist Diagram is copyrighted by IC Knowledge LLC-Used with permission.

- Fabrication is performed in a clean room environment using • photolithographic techniques.
 - Some companies utilize third party foundries (TSMC, SSMC, etc.)
- Steps are repeated multiple times to build circuit structures.
 - Resistors, transistors, conductors, etc.
 - Time to build circuit structures can range from 15 200 days. Ο
- Final passivation layer protects the circuit from contamination and damage.

Cross-section: typical CMOS transistor structure

CLEAN ROOM FACILITIES

- Fabrication of microscopic geometries (typ. 20 nm) on the semiconductor device requires special clean rooms:
 - Class 1000: "1000 particles or less of contaminates per 1 cubic foot of air."
 - For comparison: hospital surgery room is Class 10,000
- Operators wear "bunny suits" to limit human body particulates.
- Air flow is top-down and filtered.
- A single foreign particle in the wrong place can render a device to be useless.
 - CMOS geometries can be as small as 20 nm
 - In comparison:
 - Red blood cell is 6000 nm in length
 - Ebola virus is 1500 nm in length

STEP 3: WAFER TEST

- Each die is probed and run through a series of electrical tests to verify functionality and parametric characteristics.
- Bad die are marked with an ink dot, for separation at later operation.

Key Take-Away:

- "Commercial Grade" devices are tested at room temperature.
- "Automotive Grade" devices are tested at cold, room, and hot temperatures.

STEP 4 and 5: BACK-END PROCESSES

- Back-End Processes include:
 - Dicing Saw
 - Die Sort (Pick-And-Place)
 - \circ Interconnect
 - Package Assembly
 - Final Electrical Test
 - Labeling
- Frequently performed by 3rd parties.

Copyright © 2019 – Senoia Engineering Solutions, LLC. All rights reserved.

STRATEGIES AND TECHNIQUES FOR COST MODELING

DIE SIZE vs WAFER YIELD

Die size is inversely correlated with wafer yield.

• Larger die will have lower yields.

20 Defects 20 Bad Die 264 Gross Die 92% Yield

20 Defects 16 Bad Die 54 Gross Die 70% Yield

Diagram is copyrighted by IC Knowledge LLC – Used with permission.

Larger die sizes typically have lower wafer yields.

PRODUCT LIFE CYCLE IMPACT TO SEMICONDUTORS

ANSI / EIA-724-97 Product Life Cycle Data Model:

Life cycle stage will affect the cost of a given device.

STRATEGIES – COST ESTIMATING OF SEMICONDUCTORS

Multiple methods to estimate cost:

STRATEGIES – CORRELATION TO DISTRIBUTOR PRICING

- Use regression techniques to correlate known high-volume device pricing to distributor pricing.
- General form of the linear equation:

$$\circ E(y) = b_1 x + b_0 + e$$

Distributor Pricing

USE OF COMPONENT-LEVEL COST MODELS

- Use <u>specialized</u> cost models for estimating the semiconductor family under consideration.
- Examples:
 - IC Knowledge "Discrete and Power Device Cost and Price Model"
 - IC Knowledge "IC Cost and Price Model"
 - IC Knowledge "MEMS Cost and Price Model"
 - IC Knowledge "Assembly and Test Cost and Price Model"
- Access to material analysis equipment may be required: wet chemistry, SEM, x-ray, etc.
 - Key cost drivers reside at the die level.

Key IC Cost Drivers

- Production volume
- Fab process
 - Wafer size
 - Structure geometry
 - Process (i.e. CMOS, etc.)
 - # of mask layers (i.e. metal, poly, etc.)
- Die size
- Wafer Test Description
- Package
- Number of Pins

Special thanks to:

Mr. Scotten Jones

President and Founder – IC Knowledge, LLC

www.icknowledge.com

Note: there is <u>no</u> commercial relationship between ICKnowledge, LLC and Senoia Engineering Solutions, LLC

Senoia Engineering Solutions

